A fast integral equation based solver for the
computation of Taylor states in toroidal
geometries
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FOREWORD

» Integral formulations are our natural way
of thinking as physicists

E(x) = — /Vp<y>"‘ydy

" 4re Ix —y?

> Yet, they are rarely favored by physicists as
numerical schemes

» Understandable 30 years ago, when key
numerical difficulties were unresolved

» Applied mathematicians have resolved
these issues. We should now tap the power
of integral approaches

» I will illustrate this with a new, integral

equation based Taylor state solver designed
to be used in SPEC

Partial Differential Equations
of Mathematical Physics
and Integral Equations

Ronald B.Guenther and JohnW. Lee

Chapter 8



OUTLINE

» Integral equation approaches in physics - advantages,
difficulties, and solutions

» A robust integral formulation for electromagnetic scattering off
perfect conductors: the generalized Debye representation for
time harmonic Maxwell equations

» An integral equation based solver for Taylor states in toroidal
geometries



Integral equation approaches in physics:
advantages, difficulties, and solutions



INTEGRAL FORMULATION FOR LAPLACE’S EQUATION

» Compute the potential ¢ inside the
disc due to a potential u(¢) applied
on the unit circle

» We learned /worked out in E&M

Classes that 1.? Polemiulu(ﬂ)gi\‘\tnonboundnry

1 ’X|2 -1 05
=— dl
¢(X) o c |X_y‘2u(Y) y = 0
1 2 1 . 1,2 -0.5
= olr, 0) = — u d -1
o(r,0) 27 /0 1+ 72 —2rcos(p —0) (p)dep s
-1 0 1
» For the exterior Laplace problem , x

flip sign in formula

Similar formula for 3D problem and
a sphere



INTEGRAL FORMULATION FOR LAPLACE’S EQUATION

Exact Solution

Example: u(6) = cos(300)
Exact solution
é(r,0) = r*¥ cos(300)

Use trapezoidal rule for integral.
3000 points on boundary.
Domain discretized with 30 radii
and 30 angles.

Numerical solution Exact solution Numerical Error ;13




INTEGRAL FORMULATIONS - GENERAL FORMALISM

» Goal: Solve A¢ = 0 in Q2 with ¢ = u on boundary 0
where (2 is a general 2D domain
» Green’s identity tells us

1

1
d(x) = —— n-V(In|x —y|) u(y)dly+/ In [x—yn-Vu(y)dly
271' o0 27'(' o0

» Problem: n - Vu(y) is not known
» Idea: Look for ¢ of the form

o(x) = / n -V (In|x —y|) u(y)dly Double layer potential
89

» Continuity of ¢ all the way to 0€2 leads to equation for density

1

—/,L(x)—i-l/ n-V(n|x—yl|)u(y)dly =u(x) , xc o
2 27T‘(')Q



INTEGRAL FORMULATIONS - GENERAL FORMALISM

1 1
—,u(x)+/ n-V(In|x—yl|)u(y)dly =u(x) , x<coQ
2 2w 90

009 = [ - (nfx—yl) n(y)dy

» Representation as layer potentials leads to reduction in the
dimensionality of the problem and great flexibility in the
geometry of the domain

» Fredholm integral equation of the second kind for
» Integral equation as well-conditioned as the underlying physics

» If these equations are discretized with the Nystrom method,
there is no penalty for over-discretization in terms of stability.



INTEGRAL METHODS IN FUSION — 1976

Stability of a high-8, 1 =3 stellarator

J. P. Freidberg

Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico 87545

W. Grossmann

Courant Institute of Mathematical Sciences, New York University, New York, New York 10012

F. A. Haas

Culham Laboratory, Abingdon, Oxfordshire, England
(Received 16 March 1976)

The stability .of an infinitely long, high 8, I =23 stellarator is investiated. The calculation is carried out by
using the new scyllac expansion in the sharp boundary idcal magnetohydrodynamic model. It is found that
for any given size | =3 ficld allowed by equilibrium considerations and mode number m, an infinite but
discrete set of wavenumbers k exist for which the plasma is unstable to all B; that is, the critical B cquals
zero. These modes can be described as long wavelength interchanges. Thus, with regard to sharp boundary

stability, 1 =3 is less desirable than [ =1 for the basic scyllac magnetic field.

D. Solution of Laplace’s equation

We follow closely the procedure outlined prevn.ously
to determine the b, b in terms of the @,, @,. For
this we need the relahonshlp between ¢, J and n. vy,
n- V(} on the plasma surface. This requires the solu-
tion of Laplace’s equation in the straight helical geom-
etry for the given boundary and prescribed boundary
data, The one simplifying feature is that the solution is
needed only on the plasma surface and not over the
whole domain. The method consists of deriving an in-
tegral equation for ¢, § by using a form of Green’s
theorem and solving it by Fourier decomposition. As

APPENDIX

Here, we must resolve an important point before a
fast and accurate numerical evaluation of the matrix
elements A,, and B,, can be carried out. Due to the
logarithmic singularity in F*(z, v') when v=2" a rather
large number of grid points would be required for high
accuracy. We therefore seek a convenient function to
add and subtract from the integrand, such that the two-
dimensional fast Fourier transform is applied only to
a smooth function.



INTEGRAL METHODS IN FUSION — NESTOR 1986

THREE-DIMENSIONAL FREE BOUNDARY CALCULATIONS USING A SPECTRAL

GREEN’S FUNCTION METHOD

S.P. HIRSHMAN, W.I. van R1J
Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

and

P. MERKEL

Max-Planck-Institut fiir Plasmaphysik, [PP-EURATOM Association, D-8046 Garching bei Miinchen, Fed. Rep. Germany

The plasma energy ¥, = Jp, (3B + p) dV is minimized over a toroidal domain 2, using an inverse representation for the
cylindrical coordinates R = LR, (s) cos(mf — n{) and Z =£Z,,,(s) sin(mé — n{). where (s, 8, {) are radial, poloidal and
toroidal flux coordinates, respectively. The radial resolution of the MHD equations is significantly improved by scparating R
and Z into contributions from even and odd poloidal harmonics which are individually analytic near the magnetic axis. A free
boundary equilibrium results when 2, is varied to make the total pressure 2B+ p continuous at the plasma surface X, and
when the vacuum magnetic field B, satisfies the Neumann condition B,*dX,=0. The vacuum field is decomposed as
B, = By+v®, where B, is the ficld arising from plasma currents and external coils and @ is a single-valued potential
necessary o satisfy B,+dZ, =0 when p = 0. A Green’s function method is used to obtain an integral cquation over =, for the
scalar magnetic potential ® = £8,,, sin(m — n{). A linear matrix cquation is solved for ®,,, to determine BZ on the
boundary. Real experimental conditions are simulated by keeping the external and net plasma currents constant during the

itcration, Applications to /=2 stellarator cquilibria are presented

The free boundary problem requires only the
value of B2 on the boundary, which is obtained
from B, and @(x) on X . Treating the vacuum
problem by solving the integral equation (3.2)
appears to be an appropriate approach, both be-
cause the solution yields ®(x) on T, and because
no extraneous values of @(x) in the vacuum re-
gion are ever computed.

The main difficulty inherent to the Green's
function method is the calculation of the Fourier
transform of the singular Green’s function and its
normal derivative. This is solved by the following
regularization procedure. Appropriate functions
with the same singularity and periodicity are sub-
tracted from the kernels, and their analytically
calculated Fourier transforms are added to the
Fourier transformed integral equation.



DIFFICULTIES WITH INTEGRAL FORMULATIONS

» Quadratures involve singular integrands

Numerical solution Exact solution Numerical Error ;.13

0.6
04 o5
0.2
0> 0

» Solving
1 1
_EM(Xi) + 5 _wim- V (In|x; — xj|) () = u(x;)

in principle O(N3) work



DEALING WITH SINGULAR INTEGRANDS: QBX

» Field induced by integral operator is locally smooth when
restricted to the interior

» Idea: Take expansion centers away from 0f2 and evaluate field
close to 012 through Taylor expansions

» Known as Quadrature By Expansion (QBX) scheme! (QBX)
scheme

Standard Trapezoidal QBX
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TA. Klsckner, A. Barnett, L. Greengard and M. O’Neil, J. Comp. Phys 252, 332
(2013)



ACCELERATING THE CALCULATION OF p
A seemingly unrelated problem: Consider N charges g; at different
locations z;, and compute the potential ¢ at each z;
» A naive calculation takes O(N?) work.
» Can do much better: think of two separate groups of charges

\£
» Idea of the Fast Multipole Method?: Approximate potential far
away from given group of charges by multipole expansion

N 0o N
¢(Z):(Zqi>lnz+kz:;’i -y 1
i =1 i=1

» Accuracy determined by number of terms p in expansion and

minimal distance between groups of charges
21 Creencard and V. Rokhlin T Comn. Phus 73 325 (1987)




THE FAST MULTIPOLE METHOD FOR POINT CHARGES

» For given charge distribution, construct adaptive quad tree

v

Define adjacent boxes as neighbors

v

For neighbors, compute interaction with exact summation

v

For boxes far away, use expansion - accuracy now only depends
onp
Run time complexity: O(N)!

v



THE FMM FOR THE COMPUTATION OF

>

The FMM can be viewed as a fast scheme for evaluating the
matrix vector product

¢ =Mq
with Mj; = 1/2m In|x; — xj| and q the vector of point charges

Matrix equation for p is (I — K)pu = —2u with K in the class of
operators for which FMM works

i can be solved in order N or N log N time with FMM+GMRES

Recently, new fast direct solvers developed, which can be
competitive®+*

Often, high accuracy reached for N small, so dense linear algebra
does not hurt

3K.L. Ho, L. Greengard, SIAM J. Sci. Comput. 34, A2507A2532 (2012)
*S. Ambikasaran and E. Darve, SIAM . Sci. Comput. 57, 477 (2013)



INTEGRAL FORMULATIONS HAVE DEFEATED

LAPLACE’S EQUATION
Example: R. Ojala and J. Helsing (2011)

The errorin U(z)

Im{z}




A robust integral formulation for electromagnetic

scattering off perfect conductors: the generalized

Debye sources representation for time harmonic
Maxwell equations



ELECTROMAGNETIC SCATTERING

» Time-harmonic problem:
V x H = —ikE ) V x E =ikH
» Subject to perfect conductor boundary conditions:

nxE=0 , n-H=0



INTEGRAL FORMULATIONS FOR TIME-HARMONIC
MAXWELL

=ikA—-V¢ , H=V XA
with

ik|x—y]| 1k|x yl
A(X):/FM](Y)dAy : 1k/47rxy] J)(y)dAy

Two formulations usually considered:

1. Electric Field Integral Equation Formulation (EFIE): unknown is
J, and integral equation for J obtained by imposing n x E = 0

2. Magnetic Field Integral Equation Formulation (MFIE): unknown
is J, and integral equation for J obtained by imposingn x H =]



ISSUES WITH EFIE AND MFIE

» Both formulations have spurious resonances: frequencies k for
which the integral equations are not invertible

» “Low frequency breakdown”: E involves one term o k and one
term o< 1/k

» The electric field does not uncouple naturally from the magnetic
tield ask — 0

» In the multiply connected case, the MFIE has a nontrivial null
space in the limit k — 0



AN ELEGANT SOLUTION: THE GENERALIZED DEBYE
REPRESENTATION
» Use potentials (A, 1) and antipotentials (Q, v) to write E and H>:
E=kA-Vu-VxQ , H=ikQ-Vo+V xA
with

ik|x—x'| ik|x—x'|
Ax) —/ O GW)dA u(x) = / L y(xX)dA!

r
F47r\x—x’]] r 4m|x — x|
eik\x—x’| eik\x—x’|
x)= [ —————m(x)dA’ vx/ x)dA’
Q) /r47r|x—x’\ () () .F4W’X—X/|U( )
with the continuity conditions Vr -j =ikr , Vp-m = iko
» In the simply connected case, system of equations has a unique
solution for all frequencies with nonnegative imaginary part
» Uncoupling into an electrostatic problem involving r and a
magnetostatic problem involving o in limit k — 0

5C.L. Epstein, L. Greengard, and M. O’Neil. “Debye Sources, Beltrami Fields, and
a Complex Structure on Maxwell Fields”, CPAM 68, 2237-2280 (2016)




An integral equation based solver for Taylor states
in toroidal geometries



STELLARATOR EQUILIBRIA AND BELTRAMI FIELDS

» Proof of existence of 3D MHD equilibria for piecewise constant
pressure profile (and small departure from axisymmetry) by O.P.
Bruno and P. Laurence, CPAM 49, 717 (1996)

» Magnetic field in torii with constant pressure:

Vp=0 =]J=uB =V xB=AB Beltrami field!

» Such equilibria also make physical sense (Taylor relaxation) and
form the basis of the code SPEC ©
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5S. R. Hudson, R. L. Dewar, G. Dennis, M. J. Hole, M. McGann, G. von Nessi, and
S. Lazerson, PoP 19, 112502 (2012)



BELTRAMI FIELDS THROUGH GENERALIZED DEBYE

POTENTIALS
Given )\, Oy, q)pol/ solve

V xB=)\B in Q
B-n=0 onT

_—r /B-dS_@tor,/B-ds—@pol
S

S S : 5

» Let E = iB, H = B satisfy the vacuum time-harmonic Maxwell
equations, with X playing the role of k
» General potentials/“antipotentials” representation for E and H

E=iIM-Vu—-VxQ

H=iADQ-Vuv+VxA
» Satisfy E = iH if A = iQ, u = iv. Write B as

B=iAQ—-Vv+iVxQ




GENERALIZED DEBYE REPRESENTATION OF Q AND v

» Q and v are written in terms of layer potentials

iA|x—x'| iA|x—x'|
QW) = [ gorm)an o) = [ E i

m
4r|x — X/ 47r|x—x’|0

» m and o are related through
m =i\ (VrAfle —in x VrAplo) +amy.

Vr: surface gradient operator

A inverse of the surface Laplacian along T restricted to the
class of mean-zero functions

my is a tangential harmonic vector field satisfying

Vr-my =0, Vr-nxmyg=0 nx myg = —i myg.

a: complex number determined by B.C.



INTEGRAL EQUATION FOR 0 AND «

» Apply B - n = 0 and the flux condition to get integral equations

for o and «:
z)\|x x' ,
—n- V/ 47r]x—x’| (x')dS
pinlx—x| piAx—x|
+i)\n./p4_71\x—x’]mds,+in.v X /p47r]x—x’|md5/:0

1
/ B-dl = o
K Jos,

» Well-conditioned, second kind integral equation

» Unknowns only defined on I’
» Similar formulation (with more terms) for toroidal shells



NUMERICS

» 16" order hybrid Gauss-trapezoidal rule for singular integrals
» Use Fourier spectral differentiation matrix to evaluate Vr
» Compute Ar! by solving

(AF+/Fd5)w =f

Invertible equation, and w satisfies Arw = f and [ wdS =0
» Use recent numerical scheme for my for nonaxisymmetric
surfaces’
» Major simplifications for axisymmetric equilibria:
1. Closed form formula for basis of harmonic surface vector field my

1 1
mpg, = ET mpy, = _EeC

where 7, e, n local orthonormal basis on flux surface.
2. High order accuracy achieved with few unknowns = dense linear
algebra solvers fast
"L.-M. Imbert-Gérard, L. Greengard, Numerical Methods for PDEs, 33 941 (2017)




TESTING THE SOLVER: CONSTRUCTING EXACT
TAYLOR STATES 8
» View Taylor state as Grad-Shafranov equilibrium
A =—X  inQ, =0 onT
» A general solution is

(r,z,c1,€2,C3,C4,C5,C6, A) = o + C191 + C2t0n + c31P3 + c4)4 + C55

Yo = r[1(A\r) , Y1 = rY1(Ar) , ¢p =1 (\/)\2 — cér) cos(cez)
Y3 =1Y1 (w /A2 — c%r) cos(cez) , b4 = cos ()\\/ r2 4+ zz)

15 = cos (Az)

» The toroidal flux is then given by " = X [, %drdz
» For Taylor states with X-points, use 5 more terms and 5 more ¢;

8A.J. Cerfon and M. O'Neil, “Exact axisymmetric Taylor states for shaped
plasmas”, Phys. Plasmas 21, 064501 (2014)




TESTING THE SOLVER: CONSTRUCTING EXACT
TAYLOR STATES

» Treat A as unknown along with the 6 c;

» Solve for the unknowns by imposing 7 conditions on ¢ = 0 curve

P(1+¢€0,C)=0
(1 —-¢€0,C) =0
(1 — de, —re,C) =0
(1 — de, —re,C) =0
¥22(14¢€,0,C) + N19(1 +€,0,C) =0
22(1 —€,0,C) + Natp(1 —€,0,C) =0
(Vrr(1 — d€, —re,C) + N3 (1 — de, —re, C) =0

Z/RO

N1, Np, N3: curvatures at three points (1 + ¢,0),
(1 —€,0), (1 — de, ke)



COMPARISON WITH EXACT BELTRAMI FIELD

Challenging very low aspect ratio, high elongation Taylor state:
2 2 2

1 3
2
1
N 0 0 N
-1
-2
2
r
n By By B, [B — Bexact|/IBexact|
25 0.443052524078644 3.10056763474524 -3.784408049008867E-002 2.7-1073
50 0.442014263551259 3.09845144534915 -4.109405171821609E-002 2.5.107°
100 0.442018001760211 3.09850436011175 -4.104126312770094E-002 3.9.10°%
200 0.442017994270342 3.09850428092008 -4.104130814605825E-002 1.2.107°




COMPARISON WITH EXACT BELTRAMI FIELD

Challenging very low aspect ratio, high elongation Taylor state:
2 2 2

1 3
2
1
0 0
-1
=2
r r
n By By B, [B — Bexact [/ Bexact|
25 -0.7790590773628590  0.5058371725845370  0.9957374643442100 1.3-10~2
50 -0.7758504363890280  0.5043487336557070  0.9869834030024680 7.3-10"%
100 | -0.7754614741802320  0.5046765566326400  0.9867586238268730 3.0-10—°
200 | -0.7754611961412940  0.5046760189196530  0.9867575110491060 8.6-10~




BELTRAMI RESONANCES

92 - - - -
= 0.40
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s 0 - - 0.32
5
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? 40.24
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o
S —0.08
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—0.16
2. . .
= —0.24
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A =5.52819 A = 5.56546 A =6.13551 A = 6.34490 A = 6.55792

N = 1 non-axisymmetric Taylor states for A € [1, §]



RECAP

>

>

We developed an integral equation formulation for Taylor states
in toroidal geometries

V x B = uB exactly, by construction, independently of the
accuracy of the answer

Unknowns only defined on the boundary of the domain

Reduction in dimension = high accuracy for low number of
unknowns, and low memory requirement

Particularly interesting for SPEC, since at each iteration step,

B2 /240 + p only needed on boundary of each region

Exploring additional savings for the iteration, because of
theorem by Kirsch regarding boundary derivatives in scattering
problems’

Code for general stellarator geometries finished by December

?A. Kirsch, The domain derivative and two applications in inverse scattering
theory, Inverse Problems 9 81 (1993)



Integral equation approaches in physics:
advantages, difficulties, and solutions



GRAD-SHAFRANOV EQUATION AS NONLINEAR
POISSON PROBLEM

o (10U &P¥
aR(RaR) + 577 = Rh(¥(R,2),R)

» Solution requires iteration as we saw
» Without extra computational cost, solve GSE as

PV PV 10V

or ¥ _1o¥ 2
IR + 572 ~ ROR + R°h(Y(R,Z),R)

Pro: Gives access to numerical methods for Poisson’s equation

Con: Iteration on derivative term converges less fast
» Better solution, change unknown: ¥ = /RU
U 0*U 33U
i - _C = R3/2
Rz T 97 T AR h(VRU,R)
U=0  onplasmaboundary



